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A FAST CONVERGENT APPROXIMATION METHOD FOR THE
SOLUTION OF SECOND ORDER LINEAR ORDINARY

DIFFERENTIAL EQUATIONS

GEVORG A. GRIGORIAN

ABSTRACT. The Riccati equation method is used to obtain a fast convergent ap-
proximation method for the solution of second order linear ordinary differential
equations. By using examples it is shown how fast the proposed method can
converge.

1. INTRODUCTION

Let p be a real-valued continuous function on [T0,T ]. Consider the second order
linear ordinary differential equation

φ
′′+ p(t)φ = 0, t ∈ [T0,T ]. (1.1)

In practice, the problem of finding the values of solutions of differential equations
(in particular, of Eq. (1.1)) arises very often. This problem is solvable in the case
when the solutions of a differential equation (in particular in the case of Eq. (1.1))
are representable in a closed form trough the known data of the equation. How-
ever this occurs in very rare cases. To solve this problem, many numerical methods
have been developed for solving differential equations (in particular for solving Eq.
(1.1)), and many works are devoted to them (see [1-10]) and cited works therein).
Among them notice [4] in which an impressive fast convergent numerical method
for solving second order linear ordinary differential equations is developed. Un-
fortunately, the fast convergence of this method has been demonstrated practically
in some examples, but has not yet been proved mathematically, which is why it is
unclear to which equations it can be effectively applied.

In this paper we propose a new approximation method for the solution of Eq.
(1.1), based on the Riccati equation method. We show with examples how fast this
method can converge.
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2. AUXILIARY PROPOSITIONS

. Let [α,β] be a subset of [T0,T ]. Consider the equation

θ
′′+ p(t)θ = 0, t ∈ [α,β] (2.1)

and associated with it the Riccati equation

u′ = u2 + p(t), t ∈ [α,β]. (2.2)

All solutions u of (2.2), existing on [α,β], are connected with solutions θ(t) of Eq.
(2.1) by the relations (see [11], p. 332)

θ(t) = θ(t0)exp
{
−

t∫
t0

u(τ)dτ

}
, θ(t0) ̸= 0, t0, t ∈ [α,β]. (2.3)

For any x ∈ C([α,β]) denote by ∥x∥[α,β] = ∥x∥ the norm of x in C([α,β]). Set

p1(t)≡
t∫

α

p(τ)dτ, pn+1(t)≡ Pn(t)
τ∫

α

p(τ)− p2
n(τ)

Pn(τ)
dτ,

where Pn(t)≡ exp
{

2
t∫

α

pn(τ)dτ

}
, t ∈ [α,β], n = 1,2, . . . .

Theorem 2.1. Let the following conditions be satisfied:
1) (β−α)(1+∥p∥)≤ 1;
2) (β−α)(c2 +∥p∥)e(β−α)c ≤ c for some c ∈ (0,1].

Then the following assertions are valid:
I) the solution u∗ of Eq. (2.2) with u∗(α) = 0 exists on [α,β];

II) the sequence {pn(t)}+∞

n=1 converges to u∗ in C1([α,β]) and

∥u∗− pn∥ ≤
e−2(β−α)c

β−α
En(ρ), n = 1,2, ... (2.4)

∥u′∗− p′n∥ ≤
2ce−2(β−α)c

β−α
En(ρ)+

e−4(β−α)c

(β−α)2 E2
n−1(ρ), n = 2,3, ... (2.5)

where ρ ≡ (β−α)e(β−α)c min{∥p∥,c}, E1(ρ)≡ ρ2, E2(ρ)≡ ρ4

3 ,

En(ρ)≡
ρ2n

(21 −1)2n−1
(22 −1)2n−2

...(2n −1)
, n = 3,4, ....

Proof. Set M ≡ max
t∈[α,β], 0≤|u|≤γ

|u2 + p(t)|, h ≡ min{β−α, γ

M}, γ > 0. Since the

function f (t;u) ≡ u2 + p(t) is continuous on the domain {(t;u) : t ∈ [α,β], 0 ≤
u ≤ γ}, by Peano’s theorem (see [11] p. 10) Eq. (2.2) has a solution u∗ on [α,β].
Therefore the assertion I) will be proved if we show that it is always possible to
take h = β−α. If ∥P∥= 0, then for γ = 1

β−α
, we have h = β−α (since in this case
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γ

M = β−α). If ∥p∥ ≠ 0, then taking γ = ∥p∥, we obtain M ≤ ∥p∥2 +∥p∥. By the
condition 1), from here it follows that γ

M ≥ ∥p∥
∥p∥2+∥p∥ ≥ 1

∥p∥+1 ≥ β−α. Therefore
in this case, we have also h = β−α. The assertion I) is proved. Now we prove II).
By (2.2), we have

u∗(t) = u1(t)+ p1(t), t ∈ [α,β], (2.6)

where u1(t)≡
t∫

α

u2
∗(τ)dτ, t ∈ [α,β]. Using (2.2), from here, we obtain

u′∗(t)−2p1(t)u∗(t) = u2
1(t)− p2

1(t)+ p(t), t ∈ [α,β]. (2.7)

Let M1 be an integral operator, acting on C([α,β]) by the rule

(M1u)(t) = P1(t)
t∫

α

u(τ)
P1(τ)

dτ, u ∈ C([α,β]).

Acting on both sides of (2.7) by M1 and taking into account that u∗(α) = 0, we
obtain

u∗(t) = u2(t)+ p2(t), t ∈ [α,β] (2.8)

where u2(t)≡ P1(t)
t∫

α

u2
1(τ)

P1(τ)
dτ, t ∈ [α,β]. Using again (2.2), by the analogy of (2.7),

from here we obtain

u′∗(t)−2p2(t)u∗(t) = u2
2(t)− p2

2(t)+ p(t), t ∈ [α,β]. (2.9)

Let M2 be an integral operator, acting on C([α,β]) by the rule

(M2u)(t) = P2(t)
t∫

α

u(τ)
P2(τ)

dτ, u ∈ C([α,β]).

Acting on both sides of (2.9) by M2 and taking into account that u∗(α) = 0, we get

u∗(t) = u3(t)+ p3(t), t ∈ [α,β],

where u3(t) ≡ P2(t)
t∫

α

u2
2(τ)

P2(τ)
dτ, t ∈ [α,β], and so on. Continuing this process of

recursive determination of u1(t), u2(t), u3(t), ... for the general case of n (taking
into account (2.6)-(2.9)) we obtain the recursive formulae

u∗(t) = un(t)+ pn(t), t ∈ [α,β], (2.10)

where un(t)≡ Pn(t)
t∫

α

u2
n−1(τ)

Pn(τ)
dτ, t ∈ [α,β], n = 2,3, . . .. Let us estimate the norms

∥u∗∥, ∥pn∥, n = 1,2, . . . . Now we show that

∥pn∥ ≤ c, n = 1,2, . . . . (2.11)
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By 2) for n = 1, we have

∥p1∥ ≤ (β−α)∥p∥ ≤ (β−α)(c2 +∥p∥)e2(β−α)c ≤ c.

Therefore (2.11) is valid for n = 1. Suppose (2.11) is valid for some n = k. We
show that it is valid also for n = k+1. Since ∥pk∥ ≤ c, we have

∥pk+1∥= max
t∈[α,β]

∣∣∣ t∫
α

exp
{

2
t∫

τ

pk(s)ds
}(

p(τ)−p2
k(τ)

)
dτ

∣∣∣≤ (β−α)e2(β−α)c[∥p∥+c2].

This together with 2) implies (2.11) for n = k+1. Therefore (2.11) is valid for all
n = 1,2, . . . . Obviously

|u1(t)|=
∣∣∣ t∫
α

u2
∗(τ)dτ

∣∣∣≤ (t −α)∥u∗∥2, t ∈ [α,β].

From here and from (2.11) we get

|u2(t)| ≤ e2(β−α)c (t −α)3

3
∥u∗∥22

, t ∈ [α,β],

which together with (2.11) implies

|u3(t)| ≤ e(2+22)(β−α)c (t −α)7

3271 ∥u∗∥23
, t ∈ [α,β],

and so on. Continuing this process of successive estimations in the general case of
n we obtain

|un(t)| ≤ e(2+22+...+2n−1)(β−α)c (t −α)2n−1

(21 −1)2n−1
(22 −1)2n−2

...(2n −1)
∥u∗∥2n

, t ∈ [α,β],

n = 1,2, . . . . From here it follows

∥un∥ ≤
e−2(β−α)c

β−α

[
(β−α)e(β−α)c∥u∗∥

]2n

(21 −1)2n−1
(22 −1)2n−2

. . .(2n −1)
, n = 1,2, . . . . (2.12)

By the Peano’s Theorem we have ∥u∗∥ ≤ ∥p∥. This together with 2) implies

(β−α)e(β−α)c∥u∗∥ ≤ (β−α)e2(β−α)c∥p∥ ≤ c∥p∥
c2 +∥p∥

≤ ∥p∥
c2 +∥p∥

< 1.

From here, from (2.10) and (2.12) it follows that the sequence of functions
{pn(t)}+∞

n=1 converges to u∗(t) in C([α,β]). Then since ∥u∗∥ ≤ ∥p∥and by (2.11)
∥pn∥ ≤ c,n = 1,2, . . . we have

∥u∗∥ ≤ min{∥p∥,c}. (2.13)
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This together with (2.6), (2.10) and (2.12) implies (2.4). As far as En(ρ)→ 0 for
n →+∞ then to complete the proof of the theorem it is enough to prove (2.5). It is
not difficult to verify that

u′∗(t)− p′n(t) = u2
n−1(t)+2pn(t)un(t), n = 2,3, . . . .

This together with (2.4), (2.10) and (2.11) implies (2.5). The theorem is proved. □

For any matrix A ≡ (ai j)
2
i, j=1 (ai j ∈ R, i, j = 1,2) denote by ∥A∥ the norm

max
j=1,2

2
∑

i=1
|ai j| of A. Then for any matrix B ≡ (bi, j)

2
i, j=1 (bi j ∈ R, i, j = 1,2) the

following relations are valid.

∥λA+µB∥ ≤ |λ∥|A∥+ |µ|∥B∥, λ,µ ∈ R, ∥AB∥ ≤ ∥A∥ ∥B∥. (2.14)

By (2.3) under the conditions of Theorem 2.1 we have a solution of Eq. (2.1) of
the form

θ0(t)≡ exp
{
−

t∫
α

u∗(τ)dτ

}
, t ∈ [α,β].

Another solution of Eq. (2.1), linearly independent of θ0(t), can be given by the
formula (see [11], p. 327)

θ1(t)≡ θ0(t)
t∫

α

dτ

θ2
0(τ)

, t ∈ [α,β]. (2.15)

Set

θn,0(t)≡ exp
{
−

t∫
α

pn(τ)dτ

}
, θn,1(t)≡ θn,0(t)

t∫
α

dτ

θ2
n,0(τ)

,

Θ(t)≡
(

θ0(t) θ1(t)
θ′

0(t) θ′
1(t)

)
, Θn(t)≡

(
θn,0(t) θn,1(t)
θ′

n,0(t) θ′
n,1(t)

)
, t ∈ [α,β], n = 1,2, . . . .

Corollary 2.1. Let the conditions of Theorem 2.1 be satisfied. Then the sequences
{θn,0(t)}+∞

n=1 and {θn,1(t)}+∞

n=1 converge respectively to θ0(t) and θ1(t) in C2([α,β])
and

∥θ0 −θn,0∥ ≤ e−(β−α)cEn(ρ), n = 1,2, . . . , (2.16)

∥θ
′
0 −θ

′
n,0∥ ≤

[
1

β−α
+ c

]
e−(β−α)cEn(ρ), n = 1,2, . . . , (2.17)

∥θ′′
0 −θ′′

n,0∥ ≤ ∥p∥e−(β−α)cEn(ρ)+
e−4(β−α)c

(β−α)2

(
En−1(ρ)+En(ρ)

)2
, n = 2,3, . . . (2.18)

∥θ1 −θn,1∥ ≤ e−(β−α)cEn(ρ), n = 1,2, . . . , (2.19)

∥θ
′
1 −θ

′
n,1∥ ≤ [2+ c]e−(β−α)cEn(ρ), n = 1,2, . . . , (2.20)
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∥θ′′
1 −θ′′

n,1∥ ≤ ∥p∥e−(β−α)cEn(ρ)+
e−3(β−α)c

β−α

(
En−1(ρ)+En(ρ)

)2
, n = 2,3, . . . (2.21)

∥Θ(t)−Θn(t)∥ ≤ S0e−(β−α)cEn(ρ), t ∈ [α,β], m = 1,2, . . . , (2.22)

where S0 ≡ max{1+ 1
β−α

+ c,3+ c}.

Proof. The inequality (2.22) we can obtain easily from (2.16), (2.17), (2.19)
and (2.20) by using (2.14). The convergence of the sequences {θn,0(t)}+∞

n=1 and
{θn,1(t)}+∞

n=1 respectively to θ0(t) and θ1(t) in C2([α,β]) follows immediately from
(2.16)-(2.21). Therefore to complete the proof of the corollary it is enough to prove
(2.16)-(2.21). We have

|θ0(t)−θn,0(t)|=
∣∣∣∣exp

{
−

t∫
α

u∗(τ)dτ

}
−exp

{
−

t∫
α

pn(τ)dτ

}∣∣∣∣≤
≤
∣∣∣∣ t∫
α

(u∗(τ)−pn(τ))dτ

∣∣∣∣exp
{∣∣∣∣ t∫

α

u∗(τ)dτ

∣∣∣∣, ∣∣∣∣ t∫
α

pn(τ)dτ

∣∣∣∣}, t ∈ [α,β].

This together with (2.4), (2.11) and (2.13) implies (2.16). Obviously by (2.11) and
(2.13) we have

∥θ0∥ ≤ e(β−α)c, ∥θn,0∥ ≤ e(β−α)c. (2.23)

From here and from (2.16) it follows: ∥θ′
0−θ′

n,0∥= ∥−u∗θ0+ pnθn,0∥≤∥θ0∥ ∥u∗−
pn∥+∥pn∥ ∥θ0−θn,0∥≤ e(β−α)c∥u∗− pn∥+∥pn∥e−(β−α)cEn(ρ), n= 1,2, . . . . This
together with (2.4) and (2.11) implies (2.17). We prove (2.18). Using the easily
verifiable equalities

p′n(t) = 2pn−1(t)pn(t)+ p(t)− p2
n−1(t), t ∈ [α,β], n = 2,3, . . . ,

we obtain

θ
′′
n,0(t) = ([pn(t)− pn−1(t)]2 − p(t))θn,0, t ∈ [α,β], n = 2,3, . . .

Then

θ
′′
0(t)−θ

′′
n,0(t) = p(t)(θn,0(t)−θ0(t))− [pn(t)− pn−1(t)]2θn,0(t), t ∈ [α,β].

From here it follows

∥θ
′′
0 −θ

′′
n,0∥ ≤ ∥[pn − pn−1]

2∥ ∥θn,0∥+∥p∥ ∥θn,0 −θ0∥ ≤
≤ (∥u∗− pn∥+∥u∗− pn−1∥)2 ∥θn,0∥+∥p∥ ∥θn,0 −θ0∥.

This together with (2.4), (2.16) and (2.23) implies (2.18). It is not difficult to verify
that

∥θ1∥ ≤ (β−α)e(β−α)c, ∥θn,1∥ ≤ (β−α)e(β−α)c, n = 1,2,3, . . . (2.24)

We have
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|θ1(t)−θn,1(t)|=

=

∣∣∣∣ t∫
α

exp
{
−

t∫
τ

u∗(s)ds+
τ∫

α

u∗(s)ds
}

dτ−
t∫

α

exp
{
−

t∫
τ

u∗(s)ds+
τ∫

α

u∗(s)ds
}

dτ

∣∣∣∣
≤
∣∣∣∣ t∫
α

( τ∫
α

[u∗(s)−pn(s)]ds−
t∫

τ

[u∗(s)−pn(s)]ds
)
×

× exp
{

max
{∣∣∣∣− t∫

τ

u∗(s)ds+
τ∫

α

u∗(s)ds
∣∣∣∣, ∣∣∣∣− t∫

τ

pn(s)ds+
τ∫

α

pn(s)ds
∣∣∣∣}dτ, t ∈ [α,β],

n = 1,2,3, . . . .

This together with (2.4), (2.11) and (2.13) implies (2.19). Since

θ
′
1(t)=−u∗(t)θ1(t)=

1
θ0(t)

, θ
′
n,1(t)=−pn(t)θn,1(t)=

1
θn,0(t)

, t∈[α,β], n= 1,2, . . .

we have

∥θ
′
1−θ

′
n,1∥≤∥u∗∥∥θ1−θn,1∥+∥θn,1∥∥u∗−′pn∥+

∥∥∥∥ 1
θ0

− 1
θn,0

∥∥∥∥, n= 1,2, . . . . (2.25)

We have also∣∣∣∣ 1
θ0(t)

− 1
θn,0(t)

∣∣∣∣= ∣∣∣∣exp
{ t∫

α

u∗(τ)dτ

}
− exp

{ t∫
α

pn(τ)dτ

}∣∣∣∣≤
≤
∣∣∣∣ t∫
α

[
u∗(τ)−pn(τ)

]
dτ

∣∣∣∣exp
{

max
{∣∣∣∣ t∫

α

u∗(τ)dτ

∣∣∣∣, ∣∣∣∣ t∫
α

pn(τ)dτ

∣∣∣∣}}, t∈ [α,β],n = 1,2, . . . .

This together with (2.4), (2.11) and (2.13) implies∣∣∣∣∣∣∣∣ 1
θ0

− 1
θn,0

∣∣∣∣∣∣∣∣≤ e−(β−α)cEn(ρ), n = 1,2, . . . .

From here, from (2.4), (2.13), (2.24) and (2.25) we obtain it follows (2.20). It is
not difficult to verify that

θ
′′
n,1(t) = [(pn(t)− pn−1(t))2 − p(t)]θn,1(t), t ∈ [α,β]. n = 2,3, . . . .

Then since θ′′
1(t) =−p(t)θ1(t), t ∈ [α,β], we have

θ
′′
1(t)−θ

′′
n,1(t)=θn,1(t)(pn(t)−pn−1(t))2−p(t)(θ1(t)−θn,1(t)), t∈[α,β],n= 2,3, . . . .

From here it follows

∥θ
′′
1 −θn,1∥ ≤ ∥p∥ ∥θ1 −θn,1∥+∥θn,1∥ (∥pn −u∗∥+∥pn−1 −u∗∥)2.

This together with (2.4), (2.19) and (2.24) implies (2.21).
The corollary is proved. □
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3. FAST CONVERGENT APPROXIMATION METHOD

From the conditions of Theorem 2.1 is seen that they are satisfied if β−α is
small enough. This suggests how to to use Theorem 2.1 to construct approximate
solutions for Eq. (1.1) on arbitrarily large intervals [T0,T ]. Obviously to do this
it is enough to partition the interval [T0,T ] in a sum (union) of small intervals so
that for each of them Theorem 2.1 holds, and after that to construct an approximate
solution on each of the partitions and then ”glue” them properly. Next we show
how we realize this idea.

Let T0 = t0 < t1 < ... > t2N = T be the partition of the interval [T0,T ] so that for
each [tk, tk+1] = [α,β] (k = 0,2N −1) the conditions of Theorem 2.1 are satisfied.
Then according to Theorem 2.1 for every k = 0,2N −1 the equation

y′ = y2 + p(t), t ∈ [tk, tk+1]

has a solution y∗k(t) on [tk, tk+1] with y∗k(tk) = 0. Set

φ0,k(t)≡ exp
{
−

t∫
tk

y∗k(τ)dτ

}
, φ1,k(t)≡ φ0,k(t)

t∫
tk

dτ

φ2
0,k(t)

,

p1,k(t)≡
t∫

tk

p(τ)dτ, pn,k(t)≡ Pn−1,k(t)
t∫

tl

p(τ)− p2
n−1,k(τ)

Pn−1,k(τ)
dτ,

where

Pn−1,k(t)≡ exp
{

2
t∫

tk

pn−1,k(τ)dτ

}
, t ∈ [tk, tk+1], k = 0,2N −1, n = 2,3, . . . ,

φn,0,k(t)≡ exp
{
−

t∫
tk

pn,k(τ)dτ

}
, φn,1,k(t)≡ φn,0,k(t)

t∫
tk

dτ

φ2
n,0,k(t)

,

Φk(t)≡
(

φ0,k(t) φ1,k(t)
φ′

0,k(t) φ′
1,k(t)

)
, Φn,k(t)≡

(
φn,0,k(t) φn,1,k(t)
φ′

n,0,k(t) φ′
n,1,k(t)

)
, t ∈ [tk, tk+1],

k = 0,2N −1, n = 1,2, . . . . It is not difficult to verify that

Φk(tk) = Φn,k(tk) =
(

1 0
0 1

)
, k = 0,2N −1, n = 1,2, . . . . (3.1)

By induction on m define: t1,k ≡ t2k, k= 0,2N−1 −1, tm+1,k ≡ tm,2k, k= 0,2N−m −1,
m = 1,N,

Φ
0
1,k(t)≡

{
Φ2k(t), t ∈ [t2k, t2k+1],

Φ2k+1(t)Φ2k(t2k+1), t ∈ [t2k+1, t2k+2],

Φ
0
1,n,k(t)≡

{
Φn,2k(t), t ∈ [t2k, t2k+1],

Φn,2k+1(t)Φ2k(t2k+1), t ∈ [t2k+1, t2k+2].
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The matrix functions Φk(t), Φn,k(t) and the intervals [tk, tk+1], k = 0,2N −1,
n = 1,2, . . . we will call the matrix functions and the intervals of level 0 respec-
tively, and the matrix functions Φ0

1,k(t), Φ0
1,n,k(t) and the intervals [t1,k, t1,k+1], k=

0,2N−1 −1, n = 1,2, . . . we will call the matrix functions and the intervals of level
1 respectively. Let φ0

m,k(t) and Φ0
m,n,k(t), k = 0,2N−m −1, n = 1,2, . . . be ma-

trix functions of level m on the intervals [tm,k, tm,k+1], k = 0,2N−m −1 of level
m. Define by induction on m the matrix functions φ0

m,k(t) and Φ0
m,n,k(t), k =

0,2N−m−1 −1, n = 1,2, . . . on the intervals [tm+1,k, tm+1,k+1], k = 0,2N−m−1 −1
of level m+1 respectively as follows:

Φ
0
m+1,k(t)≡

{
Φ0

m,k(t), t ∈ [tm,k, tm,k+1],

Φ0
m,k+1(t)Φ

0
m,k(tm,k+1), t ∈ [tm,k+1, tm,k+2],

Φ
0
m+1,n,k(t)≡

{
Φ0

m,n,k(t), t ∈ [tm,k, tm,k+1],

Φ0
m,n,k+1(t)Φ

0
m,n,k(t2k+1), t ∈ [tm,k+1, tm,k+2],

k = 0,2N−m−1 −1, m = 1,N −1, n = 1,2, . . . .

Set: Φ∗(t)≡ Φ0
N,0(t),Φ∗,n(t)≡ Φ0

N,n,0(t), t ∈ [tN,0, tN,1] = [T0,T ], n = 1,2, . . . .

Since Φ0
∗(T0) = Φ0(T0) =

(
1 0
0 1

)
by the uniqueness theorem and (2.3), (2.15) the

matrix function Φ0
∗(t) is a fundamental matrix of Eq. (1.1) on [T0,T ]. Next our

goal is to estimate
max

t∈[T0,T ]
∥Φ∗(t)−Φ∗,n(t)∥.

Let ck be a constant for which the conditions of Theorem 2.1 with [α,β] = [tk, tk+1]

are satisfied (k = 0,2N −1). Set:

dk ≡∥p∥[tk,tk+1], ρk ≡ (tk+1−tk)e(tk+1−tk)ck min{dk,ck}, ρ≡max{ρk, k= 0,2N −1},

Sk+1 ≡ max
{

1+
1

tk+1 − tk
+ ck,3+ ck

}
, k = 0,2N −1, S ≡ max{Sk, k = 1,2N}.

Then by Corollary 2.1 (see (2.22)) we have

∥Φk(t)−Φn,k(t)∥ ≤ SEn(ρ), t ∈ [tk, tk+1], k = 0,2N −1, n = 1,2, ... (3.2)

Set
∆0,n ≡ max

k=0,2N−1
max

t∈[tk,tk+1]
∥Φk(t)−Φn,k(t)∥,

∆m,n ≡ max
k=0,2N−m−1

max
t∈[tm,k,tm,k+1]

∥Φ
0
m,k(t)−Φ

0
m,n,k(t)∥, m = 1,N, n = 1,2, . . . .

By (2.4) we have
∥Φ0

1,k(t)−Φ0
1,n,k(t)∥= ∥Φ2k+1(t)Φ2k(t2k+1)−Φn,2k+1(t)Φn,2k(t2k+1)∥≤∥Φ2k+1(t)−

Φn,2k+1(t)∥ ∥Φ2k(t2k+1)∥+∥Φ2k(t2k+1)∥ ∥Φ2k(t2k+1)−Φn,2k(t2k+1)∥, t ∈ [t2k+1, t2k+2].
Hence,
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∥Φ
0
1,k(t)−Φ

0
1,n,k(t)∥ ≤ ∥Φ2k(t2k+1)∥∥Φ2k+1(t)−Φn,2k+1(t)∥+

+|Φ2k+1(t)−Φn,2k+1(t)∥|Φ2k+1(t2k+1)−Φn,2k+1(t2k+1)∥+

+∥Φ2k+1(t)∥∥Φ2k(t2k+1)−Φn,2k(t2k+1)∥, t ∈ [t2k+1, t2k+2], k = 0,2N1 −1. (3.3)

For any ζ ∈ [T0,T ] denote by Φ(ζ; t) the fundamental matrix of Eq. (1.1) with

Φ(ζ;ζ) =

(
1 0
0 1

)
. Set M ≡ max

ζ∈[T0,T ]
max

t∈[ζ,T ]
∥Φ(ζ; t)∥. Then from (3.3) it follows

∥Φ
0
1,k(t)−Φ

0
1,n,k(t)∥ ≤ 2M∆0,n +∆

2
0,n, t ∈ [t2k+1, t2k+2].

By obvious inequality M ≥ 1 from here it follows

∥Φ
0
1,k(t)−Φ

0
1,n,k(t)∥ ≤ 2M∆0,n +∆

2
0,n, t ∈ [t1,k, t1,k+1].

Hence
∆1,n ≤ 2M∆0,n +∆

2
0,n,

and in general for any m = 0,1, . . . ,N −1 it can be shown that

∆m+1,n ≤ 2M∆m,n +∆
2
m,n. (3.4)

From here we obtain
∆m+2,n≤(2M)2

∆m,n+(2M+(2M)2)∆2
m,n+4M∆

3
m,n+∆

4
m,n,m=0,2N−2,n=1,2, . . . ,

∆m+3.n ≤ (2M)3
∆m,n+[(2M)2+(2M)3+(2M)4]∆2

m,n+16M2
∆

3
m,n+

[4M2+48M3+16M4]∆4
m,n+[24M2+32M3]∆5

m,n+[4M+8M2]∆6
m,n+8M∆

7
m,n+∆

8
m,n.

and finally

max
t∈[T0,T ]

∥Φ∗(t)−Φ∗,n(t)∥= ∆N,n ≤ (2M)N
∆0,n +∆

2
0,nQN(∆0,n), n = 1,2, ...,

where QN(t) is a polynomial of degree 2N −2, with positive coefficients (depending
only on M) such that QN(0) ̸= 0. From here and from (3.2) we obtain the following
immediately

Theorem 3.1. The sequence {Φ∗,n(t)}+∞

n=1 converges to the fundamental matrix

Φ∗(t) of Eq. (1.1)
(

Φ∗(T0) =

(
1 0
0 1

))
on [T0,T ] by the norm of matrices uni-

formly in t and the following estimates are valid

max∥Φ∗(t)−Φ∗,n(t)∥ ≤ (2M)NSEn(ρ)+(SEn(ρ))
2QN(SEn(ρ)), n = 1,2, . . . .

4. EXAMPLES

In this section we show how fast the proposed approximation can converge.
Consider the Mathieu equation (see [12], [13], p. 111)

φ
′′+(1− ε+δcos2t)φ = 0, t ∈ [T0,T ]. (4.1)
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In the case ε = δ = 0 this equation becomes an equation with constant coefficients,
that is:

φ
′′+φ = 0, t ∈ [T0,T ].

Obviously for this equation the matrix function

Φ0(t;ζ)≡
(

cos(t −ζ) sin(t −ζ

−sin(t −ζ) cos(t −ζ)

)
,(T0 ≤ ζ ≤ t ≤ T )

is its fundamental matrix with Φ0(ζ;ζ) =

(
1 0
0 1

)
for all ζ ∈ [T0,T ]. It is also

obvious that ∥Φ0(t;ζ)∥ ≤
√

2, T0 ≤ ζ ≤ t ≤ T . Due to this we will assume that
the parameters ε and δ are so small, that

∥Φ(t;ζ)∥ ≤ 2, T0 ≤ ζ ≤ t ≤ T, (4.2)

where Φ(t;ζ) is the fundamental matrix for Eq. (4.1) with Φ(ζ;ζ) =

(
1 0
0 1

)
for

all ζ ∈ [T0,T ].

Example 4.1. Let n = 2, [T0,T ] = [0,1]. Take tk = k
8 , k = 0,8. For this case we

have ∥p∥ ≤ 1, N = 3 and by (4.2) M = 2. Then it is not difficult to check that the
conditions of Theorem 2.1 with [α,β] = [tk, tk+1] ck =

1
7 (k = 0, t) are satisfied for

Eq. (4.1). It is not difficult to verify also, that for this case ρ = max
k=0,8

ρk =
1
56 e

1
56 <

1
55 . Then S = 1+8+ 1

7 , and SE2(ρ)≤ 64
21

( 1
55

)4. Then applying (3.4) three times for
successive estimation of ∆1,2, ∆2,2, ∆3,2 via SE2(ρ) (∆1,2 via ∆0,2 = SE2(ρ), ∆2,2
via ∆1,2 and ∆3,2 via ∆2,2) from here we obtain

∥Φ∗(t)−Φ∗,2(t)∥ ≤ 0.00003, t ∈ [0,1].

Example 4.2. Let n= 2, [T0,T ] = [0,8]. Take tk = k
16 , k = 0,128. For this case we

have N = 7, M = 2. Then it is not difficult to verify that for ck =
1
15( k = 0,127)

the conditions of Theorem 2.1 with [α,β] = [tk, tk+1] for Eq. (4.1) are satisfied. It is
also not difficult to verify that for this case ρ = max

k=0,128
ρk =

1
240 e

1
240 < 1

238 . Hence,

since for this case S = 256
15 , we have

∆0,2 = SE2(ρ)<
256
135

(
1

238

)4

.

Then applying (3.4) for successive estimations of ∆1,2, . . . ,∆7,2 via ∆0,2 from here
we obtain

∥Φ∗(t)−Φ∗,2(t)∥ ≤ 0.000001, t ∈ [0,8].

Example 4.3. Let n = 3, [T0,T ] = [0,128]. Take tk = k
4 , k = 0,512. For this case

we have N = 9, M = 2. Then it is not difficult to verify that for ck =
1
3( k = 0,511)
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the conditions of Theorem 2.1 with [α,β] = [tk, tk+1] for Eq. (4.1) are satisfied. For
this case we have ρ = max

k=0,128
ρk =

1
12 e

1
12 < 1

11 . Hence, since for this case S = 16
3 ,

we have

∆0,2 = SE2(ρ)<
16
189

(
1

11

)8

.

Then applying (3.4) for successive estimations of ∆1,2, . . . ,∆9,2 via ∆0,2 from here
we obtain

∥Φ∗(t)−Φ∗,3(t)∥ ≤ 0.00004, t ∈ [0,128].

Example 4.4. Let n = 4, [T0,T ] = [0,1048576]. Take tk = k
4 , k = 0,512. For this

case we have N = 22, M = 2,

SE4(ρ)<
16
3

1
347215

(
1
11

)16

and, finally, the estimate

∥Φ∗(t)−Φ∗,4(t)∥ ≤ 0.0000001, t ∈ [0,1048576].

Remark 4.1. The values of the elements of the matrices Φ∗,n(t), n = 1,2 can be

effectively calculated in the particular case when p(t) =
N
∑
j=1

[
a jt j +

b j
t+c j

+
e j

t2+ f j

]
,

t + c j ̸= 0, f j ≥ 0, j = 1,N, t ≥ t0.
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